IdentifiantMot de passe
Loading...
Mot de passe oublié ?Je m'inscris ! (gratuit)

Vous êtes nouveau sur Developpez.com ? Créez votre compte ou connectez-vous afin de pouvoir participer !

Vous devez avoir un compte Developpez.com et être connecté pour pouvoir participer aux discussions.

Vous n'avez pas encore de compte Developpez.com ? Créez-en un en quelques instants, c'est entièrement gratuit !

Si vous disposez déjà d'un compte et qu'il est bien activé, connectez-vous à l'aide du formulaire ci-dessous.

Identifiez-vous
Identifiant
Mot de passe
Mot de passe oublié ?
Créer un compte

L'inscription est gratuite et ne vous prendra que quelques instants !

Je m'inscris !

Introduction to Optimization and Hadamard Semidifferential Calculus
Un livre de Michel C. Delfour, critique par Thibaut Cuvelier

Le , par dourouc05

0PARTAGES

5  0 
Introduction to Optimization and Hadamard Semidifferential Calculus
This second edition provides an enhanced exposition of the long-overlooked Hadamard semidifferential calculus, first introduced in the 1920s by mathematicians Jacques Hadamard and Maurice René Fréchet. Hadamard semidifferential calculus is possibly the largest family of nondifferentiable functions that retains all the features of classical differential calculus, including the chain rule, making it a natural framework for initiating a large audience of undergraduates and non-mathematicians into the world of nondifferentiable optimization.

Introduction to Optimization and Hadamard Semidifferential Calculus, Second Edition:

builds upon its prior edition’s foundations in Hadamard semidifferential calculus, showcasing new material linked to convex analysis and nonsmooth optimization;
presents a modern treatment of optimization and Hadamard semidifferential calculus while remaining at a level that is accessible to undergraduate students; and
challenges students with exercises related to problems in such fields as engineering, mechanics, medicine, physics, and economics and supplies answers in Appendix B.

Students of mathematics, physics, engineering, economics, and other disciplines that demand a basic knowledge of mathematical analysis and linear algebra will find this a fitting primary or companion resource for their studies. This textbook has been designed and tested for a one-term course at the undergraduate level. In its full version, it is appropriate for a first-year graduate course and as a reference.

[Lire la suite]



Une erreur dans cette actualité ? Signalez-le nous !